Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
3.
Am J Respir Crit Care Med ; 205(1): 36-45, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1476911

ABSTRACT

Rationale: Studies have suggested some patients with asthma are at risk of severe coronavirus disease (COVID-19), but they have had limited data on asthma phenotype and have not considered if risks are specific to COVID-19. Objectives: To determine the effect of asthma phenotype on three levels of COVID-19 outcomes. Compare hospitalization rates with influenza and pneumonia. Methods: Electronic medical records were used to identify patients with asthma and match them to the general population. Patient-level data were linked to Public Health England severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test data, hospital, and mortality data. Asthma was phenotyped by medication, exacerbation history, and type 2 inflammation. The risk of each outcome, adjusted for major risk factors, was measured using Cox regression. Measurements and Main Results: A total of 434,348 patients with asthma and 748,327 matched patients were included. All patients with asthma had a significantly increased risk of a General Practice diagnosis of COVID-19. Asthma with regular inhaled corticosteroid (ICS) use (hazard ratio [HR], 1.27; 95% confidence interval [CI], 1.01-1.61), intermittent ICS plus add-on asthma medication use (HR, 2.00; 95% CI, 1.43-2.79), regular ICS plus add-on use (HR, 1.63; 95% CI, 1.37-1.94), or with frequent exacerbations (HR, 1.82; 95% CI, 1.34-2.47) was significantly associated with hospitalization. These phenotypes were significantly associated with influenza and pneumonia hospitalizations. Only patients with regular ICS plus add-on asthma therapy (HR, 1.70; 95% CI, 1.27-2.26) or frequent exacerbations (HR, 1.66; 95% CI, 1.03-2.68) had a significantly higher risk of ICU admission or death. Atopy and blood eosinophil count were not associated with severe COVID-19 outcomes. Conclusions: More severe asthma was associated with more severe COVID-19 outcomes, but type 2 inflammation was not. The risk of COVID-19 hospitalization appeared to be similar to the risk with influenza or pneumonia.


Subject(s)
Asthma/complications , COVID-19/complications , Hospitalization/statistics & numerical data , Phenotype , SARS-CoV-2 , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Adult , Asthma/drug therapy , Critical Care/statistics & numerical data , Death , England/epidemiology , Female , Humans , Influenza, Human/complications , Longitudinal Studies , Male , Middle Aged , Patient Acuity , Pneumonia/complications , Proportional Hazards Models
4.
J Allergy Clin Immunol ; 147(2): 510-519.e5, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-872184

ABSTRACT

BACKGROUND: The mechanisms underlying altered susceptibility and propensity to severe Coronavirus disease 2019 (COVID-19) disease in at-risk groups such as patients with chronic obstructive pulmonary disease (COPD) are poorly understood. Inhaled corticosteroids (ICSs) are widely used in COPD, but the extent to which these therapies protect or expose patients to risk of severe COVID-19 is unknown. OBJECTIVE: The aim of this study was to evaluate the effect of ICSs following pulmonary expression of the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme-2 (ACE2). METHODS: We evaluated the effect of ICS administration on pulmonary ACE2 expression in vitro in human airway epithelial cell cultures and in vivo in mouse models of ICS administration. Mice deficient in the type I IFN-α/ß receptor (Ifnar1-/-) and administration of exogenous IFN-ß were used to study the functional role of type-I interferon signaling in ACE2 expression. We compared sputum ACE2 expression in patients with COPD stratified according to use or nonuse of ICS. RESULTS: ICS administration attenuated ACE2 expression in mice, an effect that was reversed by exogenous IFN-ß administration, and Ifnar1-/- mice had reduced ACE2 expression, indicating that type I interferon contributes mechanistically to this effect. ICS administration attenuated expression of ACE2 in airway epithelial cell cultures from patients with COPD and in mice with elastase-induced COPD-like changes. Compared with ICS nonusers, patients with COPD who were taking ICSs also had reduced sputum expression of ACE2. CONCLUSION: ICS therapies in COPD reduce expression of the SARS-CoV-2 entry receptor ACE2. This effect may thus contribute to altered susceptibility to COVID-19 in patients with COPD.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 , Interferon Type I/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/immunology , SARS-CoV-2 , Administration, Inhalation , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Bronchi/cytology , Cells, Cultured , Disease Susceptibility , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Humans , Interferon Type I/immunology , Lung/drug effects , Lung/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics
5.
J Infect Dis ; 222(Supplement_7): S563-S569, 2020 Oct 07.
Article in English | MEDLINE | ID: covidwho-851798

ABSTRACT

Acute respiratory tract infections (ARI) constitute a substantial disease burden in adults and elderly individuals. We aimed to identify all case-control studies investigating the potential role of respiratory viruses in the etiology of ARI in older adults aged ≥65 years. We conducted a systematic literature review (across 7 databases) of case-control studies published from 1996 to 2017 that investigated the viral profile of older adults with and those without ARI. We then computed a pooled odds ratio (OR) with a 95% confidence interval and virus-specific attributable fraction among the exposed (AFE) for 8 common viruses: respiratory syncytial virus (RSV), influenza virus (Flu), parainfluenza virus (PIV), human metapneumovirus (HMPV), adenovirus (AdV), rhinovirus (RV), bocavirus (BoV), and coronavirus (CoV). From the 16 studies included, there was strong evidence of possible causal attribution for RSV (OR, 8.5 [95% CI, 3.9-18.5]; AFE, 88%), Flu (OR, 8.3 [95% CI, 4.4-15.9]; AFE, 88%), PIV (OR, not available; AFE, approximately 100%), HMPV (OR, 9.8 [95% CI, 2.3-41.0]; AFE, 90%), AdV (OR, not available; AFE, approximately 100%), RV (OR, 7.1 [95% CI, 3.7-13.6]; AFE, 86%) and CoV (OR, 2.8 [95% CI, 2.0-4.1]; AFE, 65%) in older adults presenting with ARI, compared with those without respiratory symptoms (ie, asymptomatic individuals) or healthy older adults. However, there was no significant difference in the detection of BoV in cases and controls. This review supports RSV, Flu, PIV, HMPV, AdV, RV, and CoV as important causes of ARI in older adults and provides quantitative estimates of the absolute proportion of virus-associated ARI cases to which a viral cause can be attributed. Disease burden estimates should take into account the appropriate AFE estimates (for older adults) that we report.


Subject(s)
Respiratory Tract Infections/virology , Acute Disease , Age Factors , Aged , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Respiratory Tract Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL